
Angular: how to use events in
components
Angular is a framework developed by Google that facilitates the creation of
dynamic and complex web applications. One of the key features of Angular
is the event management system, which allows components to
communicate with each other effectively. Component events in Angular offer
a powerful way to manage interaction between different parts of your
application. In this article, we will explore how to create and use component
events in Angular.

Creating Events in Components

To create an event in an Angular component, we need to follow some key
steps. Suppose we have a parent component (ParentComponent) and a
child component (ChildComponent), and we want to make the child
component emit an event when something happens inside it.

Definition of the Event in the Child Component

In the child component, we need to import the EventEmitter module from

@angular/core and create an instance of it inside the component. Next,

we will define an event using the @Output() decorator. Let's see an

example:

import { Component, EventEmitter, Output } from

'@angular/core';

@Component({

 selector: 'app-child',

 template: '<button

(click)="onButtonClick()">Click</button>',

})

export class ChildComponent {

 @Output() buttonClicked: EventEmitter<void> = new

EventEmitter<void>();

 onButtonClick(): void {

 this.buttonClicked.emit();

 }

}

In the example above, we defined an event called buttonClicked which

is an instance of EventEmitter. The event is fired when the button in the

template is clicked.

Event Handling in the Parent Component

Now that we have created the event in the child component, we need to
handle it in the parent component. To do this, we should listen to the event
in the HTML of the parent component using the (event)="handler()"

event binding hook. Here's an example:

import { Component } from '@angular/core';

@Component({

 selector: 'app-parent',

 template: '<app-child

(buttonClicked)="handleButtonClick()"></app-child>',

})

export class ParentComponent {

 handleButtonClick(): void {

 console.log('The button was clicked in the child

component.');

 // You can perform further actions here.

 }

}

In the parent component template, we are listening for the child
component's buttonClicked event and calling the

handleButtonClick() method when the event occurs.

Use of Events in the Services

Events can also be used to communicate between services and
components. We can extend this concept by using a service to manage
communication between components.

Creating a Service with Events

import { Injectable, EventEmitter } from

'@angular/core';

@Injectable({

 providedIn: 'root',

})

export class EventService {

 buttonClicked: EventEmitter<void> = new

EventEmitter<void>();

}

Use of the Service in the Components

import { Component } from '@angular/core';

import { EventService } from './event.service';

@Component({

 selector: 'app-parent',

 template: '<button

(click)="onButtonClick()">Click</button>',

})

export class ParentComponent {

 constructor(private eventService: EventService) {}

 onButtonClick(): void {

 this.eventService.buttonClicked.emit();

 }

}

@Component({

 selector: 'app-child',

 template: '<p>Child Component</p>',

})

export class ChildComponent {

 constructor(private eventService: EventService) {

 this.eventService.buttonClicked.subscribe(() =>

{

 console.log('The button was clicked in the

child component.');

 // You can perform further actions here.

 });

 }

}

In this example, we have created a service (EventService) that emits a

buttonClicked event. The parent component uses the service to emit the

event when the button is clicked, and the child component uses the same
service to subscribe to that event and handle it when it occurs.

Conclusions

Component events in Angular provide a powerful mechanism for managing
communication between different elements of an application. Creating and
using events in components can greatly improve the modularity and
maintainability of your code. Experiment with the provided examples and
adapt them to the specific needs of your application to maximize the
effectiveness of events in your Angular projects.

