Angular: organizing files and
folders of an app

Angular is a web development framework that offers a robust framework for
building modern, scalable applications. Proper organization of files and
directories is essential to keeping an Angular project manageable,
understandable, and maintainable over time. In this guide, we'll explore best
practices for structuring and organizing files and directories in an Angular

app.
Basic Structure of the Project

Let's start with the basic structure of the Angular project. Creating an orderly
structure is critical to the clarity and maintainability of your code. The basic
structure might look like this:

/app
/core

- app.component.ts
- app.module.ts
/shared
/components
/models
/services
- shared.module.ts
/features
/featurel
/components
/models



/services
- featurel.module.ts
/feature2

- main.ts
/assets
/environments

e The core folder contains the app's core module (app.module. ts),
the core component (app. component. ts) and other essential files.

e The shared folder contains modules, components, services and
templates shared between different parts of the 'application.

e The features folder hosts the various feature modules of the
application. Each feature should have its internal structure similar to
that of the main folder.

e The assets folder is dedicated to static assets such as images or
JSON files.

e The environments folder contains configuration files for
development, production, etc. environments.

Angular modules
Modules in Angular help organize code into functional units. Each app

feature should have its own module. Within each module, you can further
organize files into folders such as components, services, and models.

// Example of a module structure

/featurel



/components

- featurel.component.ts
/models

- featurel.model.ts
/services

- featurel.service.ts
- featurel.module.ts

Shared services and components

The shared folder is crucial for components, services, and templates that
are used in multiple parts of the application. Create a shared module
(shared.module. ts) to make it easier to import these elements into other
parts of the app.

Routing

For complex Angular applications, it is recommended to organize routing in
a dedicated folder. For example:

/app
/core

/routing
- app-routing.module.ts

Test

Although testing is a separate aspect, organizing tests in a structure similar
to that of the main source code can simplify long-term maintenance.



/src
/app

/testing
/unit
/components

/services
/e2e

Conclusions

Proper organization of files and directories in an Angular app is critical to
ensuring scalability, maintainability, and understandability of the code over
time. By following best structuring practices, you can create an orderly and
easily manageable development environment. Remember that these
guidelines can be adapted based on the specific needs of the project, but it
Is always a good practice to maintain consistency within the development
team.



