
Angular: the ngIf directive
Angular, the front-end development framework developed by Google, offers
a set of powerful tools for creating dynamic and interactive web
applications. Among these tools, the *ngIf directive plays a crucial role in
managing the visibility of elements within a template. In this article, we will
explore what the *ngIf directive is, how it works, and how it can be used
effectively in Angular applications.

Introduction to the *ngIf Directive

The *ngIf directive is an Angular mechanism that allows you to condition the
visibility of an element in the Document Object Model (DOM) based on a
Boolean condition. Simply put, if the condition is true, the element is made
visible; if it is false, the element is removed from the DOM. This process
makes it possible to create dynamic and responsive user interfaces.

Using *ngIf

The basic syntax of the *ngIf directive is as follows:

<div *ngIf="condition">Content to display when

condition is true</div>

Where "condition" is a Boolean variable or an expression that evaluates to
a Boolean value. If the condition is true, the contents inside the *ngIf
directive will be visible; otherwise, the element will be removed from the
DOM.

Here is a practical example:

<button (click)="showMessage =

!showMessage">Show/Hide Message</button>

<div *ngIf="showMessage">

 <p>This is a conditional message!</p>

</div>

In this example, by clicking on the "Show/Hide Message" button, the
showMessage variable will change its boolean value, affecting the visibility

of the message in the template.

Handling multiple conditions with *ngIf-else

Angular also offers the ability to handle multiple conditions using *ngIf-else.
Here's how to use it:

<div *ngIf="condition; else otherContent">

 Content to display when the condition is true

</div>

<ng-template #otherContent>

 Content to display when the condition is false

</ng-template>

This way, you can provide an alternative when the condition is not met.

Using *ngIf with components

The *ngIf directive can be used not only with HTML elements, but also with
Angular components. For example:

<app-my-component *ngIf="condition"></app-my-

component>

This way, the component will be created and included in the DOM only if the
condition is true.

Conclusions

The *ngIf directive in Angular is a powerful tool for dynamically managing
element visibility based on specific conditions. Its simple syntax and
flexibility offered allow developers to create responsive and highly
customizable user interfaces. With a thorough understanding of *ngIf,
developers can improve the user experience of their Angular applications
significantly.

