
Bash: how to set up a basic
incremental backup system
Implementing an incremental backup system on a remote server is
essential to ensure data security, minimize storage space usage, and
optimize execution times. Using Bash and cronjobs, you can automate
backup processes, ensuring that they run regularly without manual
intervention. In this article, we will explore the basic steps to set up an
incremental backup system.

An incremental backup is a type of backup that stores only the files that
have been changed or added since the previous backup. Compared to a full
backup, it requires less disk space and reduces execution time.

For this purpose, we will use rsync, a powerful tool that synchronizes files

and directories between local and remote servers efficiently, supporting
incremental transfer.

Let's start by making sure that rsync is installed on both the local and

remote servers. You can install it with the following commands:

sudo apt update

sudo apt install rsync

To avoid having to enter the password every time we perform the backup,
we configure SSH authentication with public key.

ssh-keygen -t rsa

We then copy the public key to the remote server:

ssh-copy-id user@remote_server

We create a Bash script that performs the incremental backup. Suppose we
want to backup the directory /var/www (containing web files) to a remote

server.

#!/bin/bash

Configuration

SRC_DIR="/var/www/" # Source directory

DEST_DIR="/path/backup/" # Destination directory on

remote server

REMOTE_USER="user" # Username of remote server

REMOTE_HOST="remote_server" # Host of remote server

BACKUP_DATE=$(date +'%Y-%m-%d') # Current date for

backup

LOG_FILE="/var/log/backup.log" # Log file

Incremental backup using rsync

rsync -avz --delete --link-dest=${DEST_DIR}/latest

${SRC_DIR}

${REMOTE_USER}@${REMOTE_HOST}:${DEST_DIR}/$BACKUP_DAT

E >> ${LOG_FILE} 2>&1

Update the latest backup

ssh ${REMOTE_USER}@${REMOTE_HOST} "rm -rf

${DEST_DIR}/latest && ln -s

${DEST_DIR}/${BACKUP_DATE} ${DEST_DIR}/latest"

Script explanation:

SRC_DIR: the local directory we want to save.
DEST_DIR: the backup directory on the remote server.
BACKUP_DATE: it is used to create a new folder for each incremental
backup, using the current date.
rsync -avz: synchronizes files from SRC_DIR to DEST_DIR on the

remote server. The --link-dest flag refers to the last backup, so

only changed or new files are copied.
ssh: This is used to update the latest symbolic link on the remote

server, so that it always points to the last backup performed.

Then let's make the script executable:

chmod a+x backup.sh

The next step is to automate the execution of the backup script using cron,
the Linux scheduling daemon.

Edit the crontab file for the root user or the specific user (if you want to
perform backups on a remote server):

crontab -e

Add a new line to run the script every day at 02:00 for example:

0 2 * * * /path/backup.sh

This command tells cron to run the backup script every day at 02:00. You

can change this schedule to suit your needs.

It is good practice to check the status of your backups and logs regularly.
You can check the log file created by the script:

cat /var/log/backup.log

Make sure there are no errors and that the files are copied correctly to the
remote server.

Optimization and Security

Compression: rsync supports the -z option to compress files during

transfer, reducing bandwidth usage.
Encryption: Use SSH to ensure that data is encrypted during transfer.
Off-site backups: It is good practice to keep a copy of your backups in
a different geographical location, in case of natural disasters or
hardware failures.
Automatic deletion: You can add a function to automatically delete
the oldest backupshi of a certain number of days, using a find

command in your script.

Example:

ssh ${REMOTE_USER}@${REMOTE_HOST} "find ${DEST_DIR} -

type d -mtime +30 -exec rm -rf {} \;"

This command deletes backups older than 30 days.

Conclusion

With this guide, you have set up an incremental backup system using Bash,
rsync and cronjob. This solution allows you to save disk space and

bandwidth compared to a daily full backup and ensures that your critical
data is safely stored on a remote server. Customize the cron script and
schedule to suit your business needs to maximize the efficiency of your
backup system.

