
Bash solutions for interacting with
Docker
Docker is an extremely powerful and versatile tool for building, deploying,
and running applications inside containers. However, one of the most useful
aspects of Docker is its ability to be controlled via scripts, especially using
the Bash shell. Bash scripts can automate many common tasks, simplify
container management, and integrate Docker with other development tools
and processes. In this article, we will explore some solutions that can be
implemented at the Bash script level to interact with Docker.

One of the most common operations with Docker is creating and starting
containers. With a Bash script, you can automate this to make setting up
your environment faster and less error-prone.

#!/bin/bash

Docker image name

IMAGE_NAME="my-application:latest"

Container name

CONTAINER_NAME="my-app-container"

Check if container is already running

if ["$(docker ps -q -f name=$CONTAINER_NAME)"];

then

 echo "Container $CONTAINER_NAME is already

running."

else

 echo "Creating and starting container

$CONTAINER_NAME..."

 docker run -d --name $CONTAINER_NAME $IMAGE_NAME

 echo "Container started."

fi

This script checks if a container with a given name is already running. If not,
create and start a new container based on a specific image.

Docker volumes are used to store persistent data. A Bash script can
simplify the backup and restore of volumes, which is critical for data
management.

#!/bin/bash

Docker volume name

VOLUME_NAME="my-volume"

Backup destination

BACKUP_PATH="/path/to/backup/$(date

+%Y%m%d_%H%M%S)_$VOLUME_NAME.tar.gz"

Backup the volume

docker run --rm -v $VOLUME_NAME:/volume -v

$(pwd):/backup alpine tar -czf /backup/$BACKUP_PATH -

C /volume .

echo "Backup of volume $VOLUME_NAME completed in

$BACKUP_PATH."

These scripts allow you to easily create backups of your Docker volumes
and restore them, providing a simple solution for managing data
persistence.

Docker can quickly accumulate unnecessary resources, such as broken
containers, unused images, and unassociated volumes. A Bash script can
automate the cleanup of these resources, keeping your Docker system
clean and freeing up disk space.

#!/bin/bash

Remove broken containers

docker container prune -f

Remove unused images

docker image prune -a -f

Remove unused volumes

docker volume prune -f

Remove unused networks

docker network prune -f

echo "Cleanup completed."

This script uses Docker's prune commands to remove any unused

resources, helping to keep the system running efficiently.

Another important feature that can be implemented in a Bash script is
monitoring the health of Docker containers. This can be useful to ensure
that services are always up and running.

#!/bin/bash

Name of container to monitor

CONTAINER_NAME="my-app-container"

Check if container is running

if ["$(docker ps -q -f name=$CONTAINER_NAME)"];

then

 echo "Container $CONTAINER_NAME is running."

else

 echo "Container $CONTAINER_NAME is not running.

Restarting..."

 docker start $CONTAINER_NAME

fi

This script checks whether a specific container is running. If the container is
stopped, the script automatically restarts it.

Bash scripts can also be used to integrate Docker with other systems and
tools, such as CI/CD, monitoring systems, and other automation
applications. For example, a script can be used to run automated tests on a
Docker container and send the results to a monitoring system.

#!/bin/bash

Run tests inside the Docker container

docker run --rm -v $(pwd):/app my-test-image bash -c

"cd /app && ./run-tests.sh"

Send results to a monitoring system

curl -X POST -H "Content-Type: application/json" -d

'{"status":"success"}' https://monitoring-

system.tld/api/results

Conclusion

Interacting with Docker via Bash scripts offers a wide range of possibilities
to automate and simplify container management. Whether it's creating and
starting containers, managing volumes, cleaning up resources, or
monitoring containers, Bash scripts can help make day-to-day operations
more efficient and less tedious.

