
CSS generated content in depth: a
draft for Smashing Magazine
In this post I'll discuss some possible uses of generated content. Generated
content is a powerful feature of CSS. This is a draft for a future article on
Smashing Magazine.

Inserting generated content

Generated content can be inserted before and after the real content of an
element through the :before and :after pseudo-elements, respectively.

To represent them, we can use the following fictional markup.

<p>

<before>Start</before>

Real content

<after>End</after>

</p>

And our CSS will be:

p:before {

content: "Start";

}

p:after {

content: "End";

}

http://www.w3.org/TR/CSS21/generate.html

As we can see, the property that actually inserts the two strings is
content. This property accepts the following values:

none, normal
The pseudo-content is not generated.

<string>
A textual string enclosed in matching quotes.

url()
This function allow us to insert an external resource (usually an
image), as in the background-image property.

counter(), counters()
These functions insert counters. See below for more details.

attr(attribute)
This function allow us to insert the value of the attribute attribute of

the given element.

Keep in mind that generated content takes up its own space on the page
and its presence affects the space's computation of the element that hosts
it.

Inserting strings

In the previous example, we've inserted two simple strings before and after
the real content of an element. Generated content allows us to insert also
more complex symbols through escaping.

p:before {

content: "\00A7";

padding-right: 0.2em;

}

The escaped sequence inside the double quotes is a hexadecimal Unicode
value that refers to a paragraph symbol. We can also combine simple
strings with Unicode symbols, as shown below.

p:before {

content: "(" "\00A7" ")";

padding-right: 0.2em;

}

Keep in mind that all the textual content inside the content property is

treated literally, that is, spaces and tabulations inserted via the keyboard will
be inserted in the page as well.

Inserting images

We can insert images through the url() function.

a:before {

content: url("../img/link.gif");

padding-right: 0.2em;

}

As we can see, this function works exactly as in the background-image

property.

Inserting attribute values

An attribute value of an element can be inserted through the attr()

function.

a[href]:after {

content: "(" attr(href) ")";

padding-left: 0.2em;

color: #000;

font: small "Courier New", Courier, monospace;

}

We've just inserted the value of the href attribute that, as you can see, is a

simple textual string.

Inserting counters

The automatic numbering of CSS is controlled by two properties,
counter-reset and counter-increment. Counters defined by these

properties are then used with the counter() and counters() functions

of the content property.

The counter-reset property can contain one or more names of counters

(identifiers), optionally followed by an integer. The integer sets the value
that will be incremented by the counter-increment property for any

occurence of the given element. The default value is 0. Negative values are
allowed.

The counter-increment property is similar to the previous property. The

basic difference here is that this property actually increments a counter. Its
default increment is 1. Negative values are allowed.

Now we are ready to create a practical example. Given the following
markup:

<dl>

<dt>term</dt>

<dd>definition</dd>

<dt>term</dt>

<dd>definition</dd>

<dt>term</dt>

<dd>definition</dd>

</dl>

we want to add a progressive numbering (1, 2, 3) to each definition term
(dt) in the list. The relevant CSS is the following:

dl {

counter-reset: term;

}

dt:before {

counter-increment: term;

content: counter(term);

}

The first rule in the previous listing sets a counter for the definition list. This
is called a scope. The name (an identifier) of the counter is term. Keep in

mind that once we've chosen a name for our counter this must be the same
also in the counter-increment property (of course se should use a

meaningful name).

In the second rule we attach the :before pseudo-element to the dt

element, since we want to insert the counter exactly before the actual
content of the element. Now let's take a closer look at the second
declaration of the second rule. The counter() function accepts our

identifier (term) as its argument and the content property actually

generates the counter.

As you can see, there's no space between the number and the content of
the element. If we want to add more space and, say, a period (.) after the
number, we could insert the following string in the content property:

dt:before {

content: counter(term) ". ";

}

Note that the string inside the double quotes is treated literally, that is, the
space after the period is inserted as we've typed it on the keyboard. In fact,
the content property can be regarded as the CSS counterpart of the

JavaScript document.write() method except that this property doesn't

add real content to the document. Simply put, the content property

creates a mere abstraction on the document tree but it doesn't modify it.

In case you're wondering, we can add more styles to counters by applying
other properties to the attached pseudo-element. For example:

dt:before {

content: counter(term);

padding: 1px 2px;

margin-right: 0.2em;

background: #ffc;

color: #000;

border: 1px solid #999;

font-weight: bold;

}

We've just set a background color, added some padding and a right margin,
made the font bold and outlined the counters with a thin solid border. Now
our counters are a little more attractive.

Furthermore, counters can be negative. When dealing with negative
counters, we should only keep in mind a little maths, namely the part
concerning addition and subtraction of negative and positive numbers. For
example, if we need a progressive numbering starting from 0, we could
write the following:

dl {

counter-reset: term -1;

}

dt:before {

counter-increment: term;

content: counter(term) ". ";

}

By setting the counter-reset property to -1 and incrementing it by 1, the

resulting value is 0 and the numbering will actually start from that value.
Negative counters can combine with positive counters to create interesting
results. Consider the following example:

dl {

counter-reset: term -1;

}

dt:before {

counter-increment: term 3;

content: counter(term) ". ";

}

As you can see, addition and substraction of negative and positive numbers
yield a wide range of combination between counters. With just a simple set
of calculations we can get a complete control over this automatic
numbering.

Another interesting feature of CSS counters lies in their capability of being
nested. In fact, numbering may proceed also by using progressive
sublevels, such as 1.1, 1.1.1, 2.1 and so on. For example, if we want to add
a sublevel to the elements of our list, we could write the following:

dl {

counter-reset: term definition;

}

dt:before {

counter-increment: term;

content: counter(term) ". ";

}

dd:before {

counter-increment: definition;

content: counter(term) "." counter(definition) " ";

}

This example is similar to the first one, but in this case we have two
counters, term and definition. The scope of both counters is set by the

first rule and "lives" in the dl element. The second rule inserts the first

counter before each definition term of the list. This rule is not particularly
interesting, since its effect is already known. Instead, the last rule is the
core of our code because it:

1. increments the second counter (definition) on dd elements

2. inserts the first counter (term), followed by a period

3. inserts the second counter (definition), followed by a space.

Note that steps #2 and #3 are both performed by the content property

used on the :before pseudo-element attached to the definition term.

Another interesting thing to remember is that counters are "self-nesting" in
the sense that resetting a counter on a descendant element (or pseudo-
element) automatically creates a new instance of the counter. This is useful
in the case of (X)HTML lists, where elements may be nested with arbitrary
depth. However, it's not always possible to specify a different counter for
each list, since this approach might produce a really redundant code. In that
vein, it's useful to mention the counters() function. This function creates

a string containing all the counters having the same name of the given
counter in the scope. Counters are then separated by a string. For example,
given the following markup:

item

item

item

item

item

item

item

The following CSS numbers the nested list items as 1, 1.1, 1.1.1, etc.

ol {

counter-reset: item;

}

li {

display: block;

}

li:before {

counter-increment: item;

content: counters(item, ".") " ";

}

In this example we have only the item counter for each nesting level.

Instead of writing three different counters (e.g. item1, item2, item3) and

thus creating three different scopes for each nested ol element, we can

rely on the counters() function to achieve this goal. The second rule is

really important and deserves a further explanation. Since ordered lists
have a default marker (a number), we get rid of these marker by turning the
list items into block-level elements. Keep in mind that only elements with
display: list-items have markers. Now we can look carefully at the

third rule that actually does the work. The first declaration increments the
counter previously set on the outermost list. Then, in the second
declaration, the counters() function creates all the counter's instances

for the innermost lists. The structure of this function is as follows:

1. its first argument is the name of the given counter, immediately
followed by a comma

2. its second argument is a period inserted in double quotes.

Note that we've inserted a space after the counters() function in order to

keep the numbers separate from the actual content of the list items.

Counters are formatted with decimal numbers by default. However, the
styles of the list-style-type property are also available for counters.

The default notation is counter(name) (no style) or counter(name,

'list-style-type') if we want to change the default formatting. In

practice, the recommended styles are:

decimal

decimal-leading-zero

lower-roman

upper-roman

lower-greek

lower-latin

upper-latin

lower-alpha

upper-alpha

because we should always bear in mind that we're working with numeric
systems. Furthermore, we should also be aware of the fact that the
specifications don't define the rendering of alphabetical systems at the end
of the alphabet. For example, after 26 list items the rendering of lower-

latin is undefined. Real numbers are thus recommended for long lists.

Here's an example:

dl {

counter-reset: term definition;

}

dt:before {

counter-increment: term;

content: counter(term, upper-latin) ". ";

}

dd:before {

counter-increment: definition;

content: counter(definition, lower-latin) ". ";

}

We can also add styles to the counters() function, as shown in the

following example.

li:before {

counter-increment: item;

content: counters(item, ".", lower-roman) " ";

}

Note that the counters() function can also accept a third argument

(lower-roman) as the last member of its arguments list, separated by a

second comma from the preceding period. However, the counters()

function doesn't allow us to specify different styles for each level of nesting.

