
Date parsing in Go
Date parsing in Go may seem unintuitive at first, especially for those
coming from other languages that use formats like YYYY-MM-DD. In Go, the

time.Parse function uses a specific reference format: Mon Jan 2
15:04:05 MST 2006. This layout serves as the example from which Go
infers the format of the string to interpret.

The Reference Format

Instead of using symbols like yyyy, MM or dd, Go relies on fixed values and

their positions. Here’s the full reference value:

const layout = "Mon Jan 2 15:04:05 MST 2006"

Each part represents a specific component of the date:

Mon: day of the week (e.g. "Mon")
Jan: month (e.g. "Jan")
2: day (e.g. "2")
15:04:05: time in 24h format
MST: timezone
2006: year

Parsing Example

Let’s look at an example of parsing a string in the YYYY-MM-DD format:

package main

import (

"fmt"



"time"

)

func main() {

layout := "2006-01-02"

input := "2025-07-23"

t, err := time.Parse(layout, input)

if err != nil {

fmt.Println("Error parsing:", err)

return

}

fmt.Println("Parsed date:", t)

}

Parsing with Time

To include the time as well, you can use a more extended layout:

layout := "2006-01-02 15:04:05"

input := "2025-07-23 14:30:00"

t, err := time.Parse(layout, input)

Timezones

To interpret dates with a timezone, it’s necessary to include it in the layout:

layout := "2006-01-02 15:04:05 -0700"

input := "2025-07-23 14:30:00 +0200"

t, err := time.Parse(layout, input)

Parsing with time.ParseInLocation



If you know the desired timezone, you can use time.ParseInLocation:

loc, _ := time.LoadLocation("Europe/Rome")

t, err := time.ParseInLocation("2006-01-02 15:04:05", 

"2025-07-23 14:30:00", loc)

Conclusions

Date parsing in Go requires familiarity with the reference layout. Once the
basic principle is understood, you can correctly parse almost any format.
The time package documentation is an essential resource for further

insights.


