
Date parsing in JavaScript
Date parsing in JavaScript is the process of transforming a string into a
Date object. This operation is fundamental in many applications, for

example when receiving data from an API or an HTML form.

Creating a Date Object

The Date constructor can be used in several ways. One of the most

common is passing it a string:

const date = new Date("2025-07-23T10:30:00Z");

console.log(date.toISOString());

The ISO 8601 format (YYYY-MM-DDTHH:mm:ssZ) is the safest and most

consistent for automatic parsing.

Parsing with Date.parse()

You can also use Date.parse(), which returns the timestamp (in

milliseconds) corresponding to the date:

const timestamp = Date.parse("2025-07-23T10:30:00Z");

console.log(new Date(timestamp));

Here too, the use of the ISO format is recommended.

Support for Localized Formats

Native JavaScript does not handle localized date formats well (such as
23/07/2025 or 07-23-2025). These may produce inconsistent results or



Invalid Date:

const date = new Date("23/07/2025"); // Potentially 

invalid

console.log(date.toString());

For these cases, it is recommended to use a specialized library.

Advanced Parsing with Libraries

Libraries such as date-fns, Luxon, and Day.js offer robust parsing and
support for multiple formats:

// With Day.js

dayjs("23/07/2025", "DD/MM/YYYY").toDate();

// With Luxon

luxon.DateTime.fromFormat("23/07/2025", 

"dd/MM/yyyy").toJSDate();

Best Practices

Always use the ISO 8601 format when possible.
Avoid implicit parsing of localized strings.
Always check the validity of the Date object after parsing.

For complex parsing, use reliable libraries.

Conclusion

Date parsing in JavaScript can be simple if the correct conventions are
followed. However, for international applications or complex requirements,
using external libraries is often the best choice.


