Functions in Bash

Functions in Bash are a fundamental concept for writing efficient and
modular scripts. They allow you to reuse code, reduce repetition, and
improve the maintainability of your scripts. In this article, we will explore
what functions are in Bash, how they are defined, what their main
characteristics are, and how to use them effectively.

A function in Bash is a block of code that can be defined once and called
multiple times during the execution of a script. Functions are useful for
grouping commands that perform a specific task, reducing the need to
repeat the same code in multiple places.

In Bash, a function can be defined using the following syntax:

function my_func {
Commands

Or, in a more compact form:
my_func() {

Commands

Both syntaxes are equivalent. Here's a simple example:

greet() {
echo "Hi, $1!"

This function, greet, takes one argument and prints a greeting. $1 refers
to the first argument passed to the function.

Once defined, a function can be called simply by its name:

greet "There"

The output will be:

Hi, There!

Arguments can be passed to a function in the same way they are passed to
scripts. Arguments are accessible within the function via $1, $2, $3, and so
on. If you want to access all the arguments passed, you can use $@ or $*.

Example:

multiply() {
result=$(($1 * $2))
echo "The result is: $result"

multiply 3 4

Output:

The result is: 12

In Bash, a function can return a value using the return command.
However, the return value can only be an integer between 0 and 255. To
return more complex values (such as strings), you can use echo or assign
the result to a variable.

Example of returning a status code:

check_file() {
if [-e "$1"]; then
return 0
else
return 1
fi

check file "test.txt"

if [$? -eq 0]; then

echo "File exists."
else

echo "File does not exist."
fi

Variables declared inside a function in Bash have a global scope by default.
This means that if a variable is changed inside a function, the change will
also affect the context outside the function. To avoid this, you can use local
variables.

Example:

my_script() {
local local var="Hello"
echo "$local var"

my_script

Here, 1local_var is visible only inside the my_script function.

Let's see how to combine multiple functions in a script to perform a more
complex task. Suppose we want to create a script that manages a simple
logging system.

#!/bin/bash

log() {
local level="%$1"

local message="3$2"
local date_time=$(date +"%Y-%m-%d %H:%M:%S")
echo "[$date_time] [$level] $message"

info() {
log IIINFoll II$1II

}
error() {
log IIERRORII II$1I|
}
cmd() {
local command="$1"
if $command; then
info "$command executed successfully."
else
error "$command failed to execute."
fi
}
Usage

cmd "1ls /non_existing"
cmd "echo 'This works'"

This script defines three functions: 1og, info, error, and cmd. The log
function centralizes the management of the log message format. The info
and error functions are simply shortcuts to log informational and error
messages, respectively. The cmd function executes a command and logs a
success or error message depending on the result.

Conclusion

Functions in Bash are a powerful tool for improving the organization and
maintainability of your scripts. With a proper understanding of their
characteristics and proper use, you can write more scalable, reusable, and
maintainable Bash scripts. Although Bash's functions are simple compared

to those in more complex programming languages, they offer enough
flexibility to cover a wide range of scripting needs.

