Go: how to execute shell
commands

Executing shell commands in Go can be a powerful and flexible operation,
allowing your programs to interact with the operating system and other
programs. This functionality can be used for a variety of tasks, such as
automating scripts, managing processes, or interacting with other services.
In this article, we will explore several techniques for executing shell
commands in Go, covering basic and some advanced methods.

The most common way to execute shell commands in Go is through the
os/exec package. This package provides an interface for running external
commands from your Go program.

Here is a basic example for running a command:

package main

import (
"fmt"
"os/exec"
)
func main() {
cmd := exec.Command("echo", "Hello World")
output, err := cmd.Output()
if err !'= nil {
panic(err)



fmt.Println(string(output))

In this example, the echo command is executed with the "Hello World"
argument. The Output () method executes the command, waits for its
completion and returns the standard output.

For commands that might generate important output to both stdout and
stderr, you can capture both outputs separately:

cmd := exec.Command("command", "argl", "arg2")
var stdout, stderr bytes.Buffer
cmd.Stdout = &stdout
cmd.Stderr = &stderr
err := cmd.Run()
if err !'= nil {
fmt.Println(fmt.Sprint(err) + ": " +
stderr.String())
return

b
fmt.Println("Result: " + stdout.String())

Sometimes, you may want to run a command through the shell, for example
to take advantage of its features such as piping or using environment
variables. This can be done by specifying the shell as the command and the
command to execute as the argument to this:

cmd := exec.Command("bash", "-c", "ls | grep .go")



This technique allows you to use all the features of the shell, but requires
care to avoid vulnerabilities such as command injection.

To run a command in the background and continue running your program,
you can simply not wait for the command to complete:

cmd := exec.Command("longcommand", "argl")
err := cmd.Start()
if err !'= nil {

log.Fatal(err)
b

// Your code here can continue while the command is
running

The os/exec package also provides functions for managing processes,
such as interrupting or killing a running command:

cmd := exec.Command("longcommand", "argl")
err := cmd.Start()
if err !'= nil {

log.Fatal(err)

// Terminate the process

err = cmd.Process.Kill()

if err !'= nil {
log.Fatal(err)



Conclusions

Executing shell commands in Go offers powerful flexibility to your programs.
Whether you're automating tasks, managing processes, or interacting with
other programs, the os/exec package provides the tools you need. It is
important to use these features with caution, especially when executing
commands that include unverified input, to avoid security vulnerabilities
such as command injection.



