
Go: how to get and read the
headers of HTTP requests
When working with Go for web application development, you often need to
access HTTP request headers. Headers contain crucial information, such
as the type of content accepted by the client, cookies, and many other
useful information to handle requests effectively. In this article, we will
explore how to read HTTP request headers using the Go programming
language.

To illustrate the process of reading headers, let's start by creating a simple
HTTP server in Go. We can use the net/http package provided by Go to

handle HTTP requests and responses. Here is a sample code to create a
basic HTTP server:

package main

import (

    "fmt"

    "net/http"

)

func handler(w http.ResponseWriter, r *http.Request) 

{

    fmt.Fprintf(w, "Welcome to the basic HTTP 

server!")

}

func main() {

    http.HandleFunc("/", handler)



    http.ListenAndServe(":8080", nil)

}

We now have an HTTP server that will respond with a welcome message
when a request is made. However, we need to add logic to read the request
headers.

To read the headers of an HTTP request in Go, we can do it inside the
handler function that we defined in our example. The Request structure

of the net/http package provides us with a Header field, which is an

object of type http.Header >. This object contains all the headers of the

current request.

Here's how we can modify our handler function to read and print the

request headers:

func handler(w http.ResponseWriter, r *http.Request) 

{

    // Read the request headers

    headers := r.Header

    // Print the headers

    fmt.Println("Request Header:")

    for key, values := range headers {

        fmt.Printf("%s: %s\n", key, values)

    }

    // Reply with a welcome message

    fmt.Fprintf(w, "Welcome to the basic HTTP 

server!")

}



In the code above, we are iterating over all the request headers and printing
both the key and associated values. A specific header can be accessed
using the headers["HeaderName"] notation.

Now your HTTP server will not only respond with a welcome message, but
will also print the headers of the received request. This is a useful starting
point for more advanced handling of HTTP requests in your Go application.


