
How to use Python to analyze the
performance of a website
Measuring the response metrics of a web address is essential to
understanding the performance and availability of a site. In this article, we
will explore how to use Python to collect detailed data on the performance
of a website, including latency, availability, and other key metrics. We will
use several Python libraries to do this, including requests, time,

statistics, and matplotlib for data visualization.

Before we begin, make sure you have Python and the following libraries
installed:

pip install requests matplotlib

To measure the response latency of a website, we can use the requests

library to send an HTTP request and measure the time it takes to get a
response.

import requests

import time

def measure_latency(url, num_requests=10):

 latencies = []

 for _ in range(num_requests):

 start_time = time.time()

 response = requests.get(url)

 latency = time.time() - start_time

 latencies.append(latency)

 print(f'Response status:

{response.status_code}, Latency: {latency:.4f}

seconds')

 return latencies

url = "https://www.example.com"

latencies = measure_latency(url)

After collecting the latency data, we can analyze it to get useful information
such as mean, standard deviation, and percentiles.

import statistics

def analyze_latencies(latencies):

 mean_latency = statistics.mean(latencies)

 median_latency = statistics.median(latencies)

 stdev_latency = statistics.stdev(latencies)

 percentile_90_latency =

statistics.quantiles(latencies, n=100)[89]

 print(f'Mean latency: {mean_latency:.4f}

seconds')

 print(f'Median latency: {median_latency:.4f}

seconds')

 print(f'Standard deviation: {stdev_latency:.4f}

seconds')

 print(f'90th percentile latency:

{percentile_90_latency:.4f} seconds')

analyze_latencies(latencies)

To better understand the performance of your website, it is useful to view
the data collected. We will use matplotlib to create plots.

import matplotlib.pyplot as plt

def plot_latencies(latencies):

 plt.figure(figsize=(10, 6))

 plt.plot(latencies, marker='o')

 plt.title('Website Latency Over Time')

 plt.xlabel('Request Number')

 plt.ylabel('Latency (seconds)')

 plt.grid(True)

 plt.show()

plot_latencies(latencies)

In addition to latency, it is important to monitor the availability of your
website. We can do this by logging the status of HTTP responses.

def monitor_availability(url, num_requests=10):

 availability = []

 for _ in range(num_requests):

 response = requests.get(url)

 availability.append(response.status_code ==

200)

 print(f'Response status:

{response.status_code}')

 uptime = sum(availability) / num_requests * 100

 print(f'Uptime: {uptime:.2f}%')

monitor_availability(url)

Conclusion

Measuring the response metrics of a web address is a crucial task to
ensure that the website provides a good user experience. Using Python and
the requests, time, statistics and matplotlib libraries, we can

effectively collect, analyze and visualize website performance data. This
allows us to identify and resolve any performance issues, improving the
availability and speed of the site.

By following the steps in this article, you will be able to implement a
performance monitoring system for any website, thus obtaining a detailed
view of its response metrics.

