Inserting and using jQuery plugins
iIn WordPress

One of the most frequently asked questions on forums, blogs and mailing
lists concerns the integration of jQuery plugins in WordPress. Integrating
JQuery plugins in WordPress is not a matter of queuing scripts only, but it
also means understanding the correct hierarchy and order by which scripts
are executed within WordPress. Let's see the details of this topic.

Order and hierarchy

In WordPress, a jQuery plugin depends on the jQuery library itself. For that
reason, you should always specify such a dependence when you register
your plugins:

wp_enqueue_script('jquery');
wp_register_script('plugin', 'url/to/plugin.js’,
array('jquery'), '1.0', false);
wp_enqueue_script('plugin');

The wp_register_script() function takes as its third parameter an array
containing all the scripts our plugin depends on. In this case, the main
dependence script is jQuery.

If you don't follow this approach, your plugin is likely to fail.

Invoking the plugin

http://codex.wordpress.org/Function_Reference/wp_register_script

You should invoke your plugin just after the main plugin file, always
respecting the hierarchy mentioned above. For that reason, your code
should be put within a separate JavaScript file.

Within this file, you should always wrap your code in the main jQuery
namespace, like so:

(function($) {
$(function() {

$(element).plugin();

1))

})(jQuery);

In the same way, your JavaScript file should be enqueued just after the
main jQuery plugin:

wp_enqueue_script('jquery');
wp_register_script('plugin', 'url/to/plugin.js’,
array('jquery'), '1.0', false);
wp_enqueue_script('plugin');
wp_register_script('script', 'url/to/script.js’,
array('jquery'), '1.0', false);
wp_enqueue_script('script');

As you can see, we're always respecting the script hierarchy established by
WordPress.

Use the wp_enqueue_scripts action

All the code showed so far should be put in a separate function to be added
to the wp_enqueue_scripts action:

function add_my_scripts() {
if('is_admin()) {

wp_enqueue_script('jquery');
wp_register_script('plugin’',

'url/to/plugin.js', array('jquery'), '1.0', false);
wp_enqueue_script('plugin');
wp_register_script('script',

'url/to/script.js', array('jquery'), '1.0', false);
wp_enqueue_script('script');

add_action('wp_enqueue_scripts', 'add_my_scripts');

When a plugin must accept theme options

If your jQuery plugin must accept theme options as its parameters, you can
insert the plugin call directly in the document's content. I'm not a big fan of
this approach because it tends to create several bottlenecks during page
loading. However, it's the most used approach followed by many theme
developers.

Either you choose to use the header . php or the footer.php template,
take a look at the position of the wp_head () and wp_footer () functions

within your templates.

If you've included your scripts using the wp_enqueue_scripts action,
then WordPress will use such functions as a sort of placeholders to insert
your files within the markup.

For that reason, your plugin's call must always be inserted after these
functions or you'll get a JavaScript error because you're attempting to use a
JQuery's method which has not been defined yet:

<?php wp_head(); ?>
<script type="text/javascript'">
(function($) {
$(function() {
<?php
$slideshow_effect =

get_option('my-theme-slideshow-effect');

?>

$('#slideshow').nivoSlider ({
effect: '<?php echo
$slideshow_effect; ?2>'
1)
1)

})(jQuery);

</script>

Once you've properly understood this process, achieving your goals is
pretty simple.

