
Node.js: how to get a list of
WooCommerce products with the
REST API
In this article we will see how to get the list of products in a WooCommerce
store using Node.js and the WooCommerce REST API. We will use Ubuntu
Server 16.04 with nginx.

The package.json file

The core modules are ExpressJS and WooCommerce. The others only
serve to implement the accessory functions of our app such as
authentication.

{

 "name": "WCNode",

 "version": "1.0.0",

 "description": "WCNode",

 "author": "Nome Cognome <account@sito.com>",

 "dependencies": {

"body-parser": "^1.17.2",

"cookie-parser": "^1.4.1",

"ejs": "^2.5.6",

"express": "^4.15.3",

"helmet": "^2.1.1",

"serve-favicon": "^2.4.3"

"woocommerce": "^2.4.0"

 },

 "license": "MIT"

 }

At this point we install the modules:

npm install

SSL settings

We create a new set of rules for nginx after acquiring root privileges (sudo

-i and then nano /etc/nginx/sites-available/wcnode):

upstream wcnode {

 server 127.0.0.1:3000;

 }

server {

listen 80;

server_name wcnode.sito.com;

root /home/wcnode/www;

index index.html;

client_max_body_size 8m;

location / {

 try_files $uri @wcnode;

}

location @wcnode {

 proxy_pass https://wcnode;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

}

}

Then we enable the new set of rules:

ln -s /etc/nginx/sites-available/wcnode

/etc/nginx/sites-enabled/wcnode

If you have not already installed the Let's Encrypt tool you can do it as
follows: first, add the repository:

add-apt-repository ppa:certbot/certbot

Then update the package list:

apt-get update

Finally install Certbot:

apt-get install python-certbot-nginx

Before restarting nginx, we get an SSL certificate from Let's Encrypt:

certbot --nginx -d wcnode.sito.com

We choose option 2 during the installation in order to have the SSL redirect
inserted in our set of rules.

Now we can copy the certificate files into the directory of our app:

cp

/etc/letsencrypt/live/wcnode.sito.com/fullchain.pem >

/home/wcnode/app/fullchain.pem && chown wcnode:wcnode

/home/wcnode/app/fullchain.pem

cp /etc/letsencrypt/live/wcnode.site.com/privkey.pem

> /home/wcnode/app/privkey.pem && chown wcnode:wcnode

/home/wcnode/app/privkey.pem

Now we have to create a new service for systemd so that the application

keeps running and is live at reboot. We type nano

/etc/systemd/system/wcnode.service and insert the following

contents:

[Service]

 WorkingDirectory=/home/wcnode/app

 ExecStart=/usr/local/bin/node app.js

 Restart=always

 StandardOutput=syslog

 StandardError=syslog

 SyslogIdentifier=wcnode

 User=wcnode

 Group=wcnode

 Environment=NODE_ENV=production

 [Install]

 WantedBy=multi-user.target

Now we can enable the service:

systemctl enable wcnode

And we start it:

systemctl start wcnode

Let's test the nginx configuration:

nginx -t

If everything is ok, we restart it:

systemctl restart nginx

The app code

Basically, a GET request will be performed to the WooCommerce store
using the REST API endpoint /wp-json/wc/v2/products with our

credentials.

The base structure of our app is as follows:

'use strict';

const express = require('express');

const fs = require('fs');

const https = require('https');

const port = process.env.PORT || 3000;

const app = express();

const routes = require('./routes');

const API = require('./lib/API');

const sslOptions = {

 key: fs.readFileSync('privkey.pem'),

 cert: fs.readFileSync('fullchain.pem')

 };

 app.disable('x-powered-by');

 app.set('view engine', 'ejs');

 app.use((req, res, next) => {

 req.API = API;

 next();

 });

 app.get('/products', routes.products);

 https.createServer(sslOptions, app).listen(port);

The management of calls to the API is delegated to the API class that we

have made available in all the routes of our app through the middleware
function defined in .use() . In this way, the request object now has a

reference to this class that is visible throughout the application lifecycle.

The class is very simple. First, it gets the WooCommerce module and

defines the basic options:

'use strict';

const WC = require('woocommerce');

const WooCommerce = new WC({

 url: 'https://ecommerce.com',

 ssl: true,

 consumerKey: 'ck_123456789abcd',

 secret: 'cs_abcdefg12345'

});

Then comes the body of the class:

class API {

static products() {

 return WooCommerce.get('/products');

}

}

module.exports = API;

The static products() method returns a Promise that can have two

results:

1. The request is successful; an array of objects is returned.
2. The request fails; an error is returned with details.

We use this method in our route:

'use strict';

// routes/index.js

module.exports = {

 products: (req, res) => {

 req.API.products().then(data => {

 res.render('products', {products:

data.products});

 }).catch(err => {

 res.json(err);

 });

 }

};

The result is shown below.

