
Node.js: how to manage the Let's
Encrypt SSL certificates for nginx
We can easily handle Let's Encrypt SSL certificates for nginx with Node.js.

First, we need to get the SSL certificate for our domain:

sudo certbot --nginx -d example.com

Once gained root privileges (sudo -i) we can copy the certificate files to

the appropriate directory plus restoring the correct ownership on these files:

cp /etc/letsencrypt/live/example.com/fullchain.pem

/home/example/app/fullchain.pem

chown example:example /home/example/app/fullchain.pem

cp /etc/letsencrypt/live/example.com/privkey.pem

/home/example/app/privkey.pem

chown example:example /home/example/app/privkey.pem

Now we can use the certificate in Node.js:

'use strict';

const express = require('express');

const fs = require('fs');

const https = require('https');

const port = process.env.PORT || 8080;

const app = express();

const sslOptions = {

 key: fs.readFileSync('privkey.pem'),

 cert: fs.readFileSync('fullchain.pem')

};

https.createServer(sslOptions, app).listen(port);

Finally, we need a cronjob for the root user (crontab -e) with the

following commands:

+ + + + + /usr/bin/certbot renew --quiet

+ + + + + cat

/etc/letsencrypt/live/example.com/fullchain.pem >

/home/example/app/fullchain.pem && chown

example:example /home/example/app/fullchain.pem

+ + + + + cat

/etc/letsencrypt/live/example.com/privkey.pem >

/home/example/app/privkey.pem && chown

example:example /home/example/app/privkey.pem

Replace the + signs with the appropriate time values and restart the cron

daemon. Important: the second and third commands should not be
executed at the same time of the first one. We don't know in advance how
much time it will take to certbot to renew the certificates, so make sure that
such commands will run just after a few minutes.

