
Python: how to calculate the
number of available IP addresses
in a subnet
Calculating the number of available IP addresses in a subnet is a
fundamental skill for networking professionals. In this article, we will
illustrate how to use Python to perform these calculations, taking advantage
of the potential of the language and some useful libraries.

Before proceeding with the Python code, it is important to understand some
basic concepts about subnetting and IP addresses. An Internet Protocol (IP)
address is a unique identifier assigned to each device on a network. IP
addresses can be of two types: IPv4 and IPv6. Here we will focus on IPv4
addresses, which are made up of 32 bits and are usually expressed in
dotted decimal notation (example: 192.168.1.1).

A subnet is a division of an IP network into smaller blocks, which allows for
more efficient traffic management and greater security. The capacity of a
subnet is determined by its netmask, which specifies how many bits of the
IP address are reserved for identifying the network and how many for hosts
within that network.

The formula to calculate the number of available addresses in a subnet is:

Number of addresses = 2(32-bit number of netmask)

For a subnet with a 24-bit netmask (commonly expressed as /24 or
255.255.255.0), the calculation would be:

2(32-24) = 256

Of these 256 addresses, one is reserved for the network address and one
for the broadcast, thus leaving 254 usable addresses for hosts.

Python offers several libraries that can help calculate available IP
addresses. One of the most common is ipaddress. Here is a code

example that uses this library to calculate the number of available IP
addresses in a subnet:

import ipaddress

def calc_available_addresses(subnet):

 # Creating an IP network object using the

ipaddress library

 net_obj = ipaddress.ip_network(subnet)

 # Calculating the total number of addresses in

the subnet

 total_addresses = net_obj.num_addresses

 # Stealing network and broadcast addresses

 available_addresses = total_addresses - 2

 return available_addresses

Example of use

subnet = "192.168.1.0/24"

available_addresses =

calc_available_addresses(subnet)

print(f"Usable IP addresses: {available_addresses}")

In conclusion, calculating the number of IP addresses in a subnet is
essential for planning and managing networks. Using Python and its
libraries, you can greatly simplify this task, making calculations fast and
precise. With proper knowledge and the right tools, managing subnets
becomes a much more manageable task.

