
Python: how to create getters and
setters for classes with decorators
In this article we will talk about the decorators used to specify getters and
setters in Python classes.

Let's imagine we need to implement a class that uses pymongo to work with
a MongoDB database.

The first design choice we face is how to store the database connection
URL and the client instance using that URL. A simple solution is to use a
class attribute and a public attribute like this:

import pymongo

from pymongo import MongoClient

class Database():

 connection_str = 'mongodb://localhost:27017/'

 def __init__(self):

 self.client =

MongoClient(self.connection_str)

It makes sense that the client instance is kept public in order to make it
available elsewhere in our code base.

At this point we have to set the references to the database and to the
collection of documents. In this case we choose to keep these attributes
private.

class Database():

 connection_str = 'mongodb://localhost:27017/'

 def __init__(self):

 self.client =

MongoClient(self.connection_str)

 self._collection = None

 self._database = None

A developer who comes from a language where the OO paradigm follows
the traditional Java design might be tempted to add the following methods
to implement getters and setters.

class Database():

 connection_str = 'mongodb://localhost:27017/'

 def __init__(self):

 self.client =

MongoClient(self.connection_str)

 self._collection = None

 self._database = None

 def get_database(self):

 return self._database

 def set_database(self, name):

 self._database = self.client[name]

 def get_collection(self):

 return self._collection

 def set_collection(self, name):

 self._collection = self._database[name]

This code works fine, but as soon as we try to use it, we immediately realize
that its design is not usable and is not "pythonic":

db = Database()

db.set_database('test')

db.set_collection('data')

We can achieve exactly the same result by using the @property decorator

instead to create getters that allow us to access the class member without
having to invoke a method directly.

class Database():

 connection_str = 'mongodb://localhost:27017/'

 def __init__(self):

 self.client =

MongoClient(self.connection_str)

 self._collection = None

 self._database = None

 @property

 def database(self):

 return self._database

 @property

 def collection(self):

 return self._collection

Now we can access the two attributes from outside the class simply with
db.database and db.collection. To create setters instead, we use the

name of the methods just defined as decorators by specifying the setter

attribute, like this:

class Database():

 connection_str = 'mongodb://localhost:27017/'

 def __init__(self):

 self.client =

MongoClient(self.connection_str)

 self._collection = None

 self._database = None

 @property

 def database(self):

 return self._database

 @database.setter

 def database(self, name):

 self._database = self.client[name]

 @property

 def collection(self):

 return self._collection

 @collection.setter

 def collection(self, name):

 self._collection = self._database[name]

Now the code seen above that used direct method invocation can be
rewritten as follows:

db = Database()

db.database = 'test'

db.collection = 'data'

In short, Python offers a different way to set a class's getters and setters
that differs from traditional OO languages.

