Python: how to execute shell
commands

Writing a Python script that executes shell commands provides a powerful
tool for automating system operations, managing processes, and interacting
with the operating system. Python provides several libraries for running
shell commands, each with its own benefits and use cases. In this article,
we'll explore some of the main ways to execute shell commands in Python,
covering the subprocess, os, and sh libraries.. p>

1. Using subprocess

The subprocess library is the most flexible and recommended tool for
executing shell commands in Python. It offers great flexibility by allowing
the execution of new commands, connecting to their input/output/error
pipes and obtaining their return codes.

import subprocess

Run a simple command

result = subprocess.run(["1ls", "-1"],
capture_output=True, text=True)
print(result.stdout)

Running a command and capturing the output
try:

output = subprocess.check_output(["1ls", "-1"],
text=True)

print(output)

except subprocess.CalledProcessError as e:
print(e)

2. Using os.system and os . popen

Before the introduction of subprocess, the os module was commonly
used to execute shell commands. However, compared to subprocess, it
offers less control and flexibility.

os.system(): Executes the indicated command in a subshell.

import os

Example of os.system usage
os.system('ls -1")

0s.popen(): Executes the indicated command in a subshell and returns a
file object linked to the standard input or output of the command (depending
on the parameters).

Example of using os.popen
stream = os.popen('ls -1")
output = stream.read()
print(output)

3. Using sh (only on Unix-like)

The sh module is a wrapper for subprocess designed to make executing
shell commands easier and more intuitive. It is not included in the Python
standard library and only works on Unix-like systems.

from sh import 1s

Example of using sh
print(ls("-1"))

Security Considerations

When running shell commands from a Python script, it is important to
consider the security implications, especially if you are working with user-
supplied input. Be sure to sanitize all inputs to avoid vulnerabilities such as
command injection.

Conclusion

Python offers several options for executing shell commands, each with its
own advantages. subprocess is the most powerful and flexible choice for
most applications, while os and sh may be simpler options for use cases
specific. Selecting the right library depends on your project's specific needs
and security requirements.

