
Python: how to use the urllib
module to make HTTP requests
In this article we will discover the basics of HTTP requests in Python using
the urllib core module.

When making an HTTP request, you must first verify that the protocol
specified in the URL is HTTP or HTTPS. We will be using HTTPS in this
example, but you may be required to use plain HTTP if the remote site does
not have an SSL certificate.

urllib.request has the Request class which, as mentioned in the

documentation, has the primary purpose of handling HTTP URLs.

Our HTTP request begins by creating an instance of this class and passing
a URL to it.

from urllib.request import urlopen, Request

request_url = 'https://gabrieleromanato.com'

request = Request(request_url)

Now we need to actually open the remote URL using the urlopen()

function which creates a stream. Being a stream, the recommended way to
manage it is to use a context manager with the with operator.

with urlopen(request) as response:

 pass

response is an instance of urllib.response and has the properties

status, which returns the integer HTTP status code returned by the

server, and headers which returns the HTTP headers of the response as

an instance of the EmailMessage class. The EmailMessage.items()

method returns a list of tuples containing the HTTP header name and its
value. We can also convert this list of tuples into a list of dictionaries using
the map() function.

def create_single_header(data):

 key, value = data

 d = {}

 d[key] = value

 return d

request_url = 'https://gabrieleromanato.com'

request = Request(request_url)

with urlopen(request) as response:

 status_code = response.status

 res_headers = list(map(create_single_header,

response.headers.items()))

Instead, to find the body of the response returned by the server, i.e. the
HTML document, we must bear in mind that within our context manager we
are operating with a stream of bytes, therefore we can use the same
approach that we use with files (read() and decode()).

request_url = 'https://gabrieleromanato.com'

request = Request(request_url)

with urlopen(request) as response:

 status_code = response.status

 res_headers = list(map(create_single_header,

response.headers.items()))

 body = response.read().decode('utf-8')

Our code, however, is missing a key part: exception handling. In fact, the
URL may not be valid, the server may return an HTTP error or the
connection may time out. We can add exception handling like this.

from urllib.error import HTTPError, URLError

from urllib.request import urlopen, Request

def create_single_header(data):

 key, value = data

 d = {}

 d[key] = value

 return d

def send_http_request(request_url):

 if not request_url.startswith('https://'):

 return False

 try:

 request = Request(request_url)

 with urlopen(request) as response:

 status_code = response.status

 res_headers =

list(map(create_single_header,

response.headers.items()))

 body = response.read().decode('utf-8')

 return {

 'status': status_code,

 'headers': res_headers,

 'body': body

 }

 except URLError as err:

 return err.reason

 except HTTPError as error:

 return error

 except TimeoutError as tm_err:

 return tm_err

Finally, we can use our code as follows:

def main():

print(send_http_request('https://gabrieleromanato.com

'))

if __name__ == '__main__':

 main()

