
React: how to protect routes with a
Bearer Token
Security is a fundamental component in the development of modern web
applications. When it comes to securing routes in a React application, using
a Bearer Token is a common and effective practice. In this article, we will
explore how to implement this security in your React routes.

What is a Bearer Token?

A Bearer Token is a type of access token that allows its holder to access
protected resources. In the context of web applications, it is often used for
user authentication. When a user successfully authenticates, they receive a
Bearer Token that must be included in subsequent requests to gain access
to resources protected by the backend.

Initial Configuration

First of all, make sure you have an authentication system implemented on
your backend that provides a Bearer Token after user authentication. Once
you have this part configured, you can start securing routes in your React
frontend.

Using React Router

React Router is a very popular library for managing navigation in React
applications. To protect routes, we can leverage the concept of private
routes, which require authentication for access.

// src/components/PrivateRoute.js

import React from 'react';

import { Route, Redirect } from 'react-router-dom';

const PrivateRoute = ({ component: Component,

isAuthenticated, ...rest }) => (

 <Route

 {...rest}

 render={(props) =>

 isAuthenticated ? (

 <Component {...props} />

) : (

 <Redirect to="/login" />

)

 }

 />

);

export default PrivateRoute;

You can now use the PrivateRoute component in places where you want

to require authentication. For example:

// src/App.js

import React from 'react';

import { BrowserRouter as Router, Route, Switch }

from 'react-router-dom';

import PrivateRoute from './components/PrivateRoute';

import Home from './components/Home';

import Login from './components/Login';

const App = () => {

 const isAuthenticated = /* Logic to verify

authentication */;

 return (

 <Router>

 <Switch>

 <Route path="/login" component={Login} />

 <PrivateRoute

 path="/home"

 component={Home}

 isAuthenticated={isAuthenticated}

 />

 {/* Other routes */}

 </Switch>

 </Router>

);

};

export default App;

When a user successfully authenticates, you will need to save the Bearer
Token somewhere safe, such as in application state or cookies. Be sure to
include the Bearer Token in your requests to the backend to gain access to
protected resources.

// Example of how you might handle the Bearer Token

after authentication

const handleLogin = async (credentials) => {

 try {

 // Make the authentication request to the

backend

 const response = await api.post('/login',

credentials);

 // Extract the Bearer Token from the response

 const { token } = response.data;

 // Save the Bearer Token in the application

state or cookies

 setToken(token);

 // Perform other necessary actions, such as

redirecting to a secure page

 history.push('/home');

 } catch (error) {

 // Handle authentication errors

 console.error('Error authenticating', error);

 }

};

Conclusion

Securing routes with a Bearer Token in React is an important practice to
ensure the security of your applications. By using React Router and
implementing private routes, you can ensure that only authenticated users
can access protected resources. Always remember to handle the Bearer
Token carefully and include it correctly in your requests to the backend.

