React: how to use Redux

React is a JavaScript library that has revolutionized user interface
development by making it easier to create reusable and responsive
components. However, as applications grow in complexity, state
management becomes an increasingly significant challenge. This is where
Redux comes in as a powerful tool for managing state effectively and
predictably.

What is Redux?

Redux is a state management library for JavaScript, often used with React,
although it can be adopted with other frameworks or libraries. Its
fundamental idea is to centralize the application state in a store, making it
easier to manage and update the complex state.

Key Principles of Redux

1. Store: A store is an object that holds the state of the application. The
only way to change state in a Redux app is to send an action, an
object that describes what happened.

2. Action: Actions are flat objects that represent a change in state. They
contain a type that identifies the type of action and, optionally,
additional data.

3. Reducer: Reducers are pure functions that specify how the state of the
application changes in response to an action. They receive the current
state and an action, returning the new state.

4. Dispatch: The dispatch function is the way with which the shares
are sent to the store. When you call dispatch with an action, the
store calls your reducer with the provided action.

5. Middleware: Redux offers the possibility of using middleware to
perform asynchronous actions, manage side effects or intervene
during the dispatch phase.

How to integrate Redux into a React
application

Installing the necessary packages

To use Redux in a React project, you need to install some packages. You
can do this via npm or yarn:

npm install redux react-redux
or
yarn add redux react-redux

Create a store

// store.js

import { createStore } from 'redux';

import rootReducer from './reducers'; // Import your
main reducer

const store = createStore(rootReducer);

export default store;

Define actions

// actions.js
export const increment = () => {
return {
type: 'INCREMENT',
3
Ji

export const decrement = () => {
return {
type: 'DECREMENT',
I¥
Iy

Create reducers

// reducers.js
const initialState = {
count: 0,

Iy

const counterReducer = (state = initialState, action)
:>{
switch (action.type) {
case 'INCREMENT':
return { count: state.count + 1 };
case 'DECREMENT':
return { count: state.count - 1 };
default:
return state;

I

export default counterReducer;

Connecting React to Redux

// App.Js

import React from 'react';

import { useSelector, useDispatch } from 'react-
redux';

import { increment, decrement } from './actions';

function App() {
const count = useSelector((state) => state.count);
const dispatch = useDispatch();

return (
<div>
<h1>Counter: {count}</h1>
<button onClick={() =>
dispatch(increment())}>Increment</button>
<button onClick={() =>
dispatch(decrement())}>Decrement</button>
</div>

)

export default App;

Connect the store to the React application

// index.js

import React from 'react';

import ReactDOM from 'react-dom';
import { Provider } from 'react-redux';
import store from './store';

import App from './App';

ReactDOM. render (
<Provider store={store}>
<App />
</Provider>,
document.getElementById('root')

),

Conclusions

Integrating Redux into a React project may seem complicated at first, but
once you understand the basics, it offers a robust and scalable way to
manage application state. By centralizing state in a store and following the
one-way flow of actions, Redux provides a clear and predictable
architecture that facilitates the development and maintenance of complex
applications.

