
Using JSDoc for organizing our
CSS code
In this article I'll explain how to create JSDoc-like tags for keeping our CSS
organized. A basic knowledge of JSDoc is not required. This is just a
proposal, not a recommended best-practice.

In Java there is a tool called javadoc. This tool creates the API's
documentation in HTML format by using comments inserted in the source
code. JSDoc is a similar tool for JavaScript. The following table shows the
special tags used for creating the HTML documentation. Each comments
block must start with /** and end with */.

JSDoc tags

Tag Description

@param

@argument

A parameter of a function, with its name and
description.

@return

@returns
The returned value of the function.

@author The author of the code.

@deprecated The function is not approved and can be removed.

@see
Creates a HTML link with a description of the specified
class.

@version Specifies the released version.

@requires
Creates a HTML link with the specified class required
by that class.

@throws

@exception

Describes the type of exception generated by a
function.

@link
Creates a HTML link with the specified class. Similar to
@see, but embedded in the comment's text.

http://jsdoc.sourceforge.net/


@fileoverview

Special tag. When used in the first documentation's
block, specifies that this block should be used for
providing an introduction to the file itself.

@class
Provides information about the class and it's used in
the constructor's documentation.

@constructor Specifies a function as a class constructor.

@type Specifies the type returned by a function.

@extends
Specifies that a class works as a sub-class of another
one.

@private Specifies that a class or function is private.

@final Specifies that a value is a constant type.

@ignore JSDoc ignores the functions marked with this tag.

@member Shows that a function is a member of a given class.

@base
Forces JSDoc to view the current class constructor as a
subclass of the class given as the value to this tag.

@addon

Marks a function as being an addon to a core
JavaScript function that isn't defined within your own
sources.

@exec

Forces JSDoc to "execute" this method as part of its
preprocessing step, in the same way that class
contructors are executed. This can allow attributes to
be added to a class from within a function.

Now we can start from the above tags and build up our new tags for a CSS
layout. Let's start with some general parameters for a hypothetical layout.
The code could be the following.

/* 

@overview Wordpress Template

@author Gabriele Romanato

@version 1.0



@link http://gabrieleromanato.name 

*/

As you can see, this is a simple introduction that we can put at the very
beginning of our style sheet. In that vein, we can declare the type of our
layout and the sections contained in the document.

/* 

@type 2-columns layout with header and footer

@sections #header, #content, #sidebar, #footer 

*/

We can do the same for each section:

/* 

@section #header

@elements h1 

*/

If an element is selected by a class selector, we can specify it as follows:

/* 

@class .left, .right

@elements img, span 

*/



Obviously we can add a simple CSS comment to each section, as usual.
This is only a matter of personal choices and we are free to use other
techniques as well.


