
Using Supabase in Python
Supabase is an open-source alternative to Firebase that provides a
PostgreSQL database, authentication, storage, and serverless functions. In
this guide, we will see how to use Supabase with Python to manage data in
a database.

Installation

First, let's install the Supabase Python client:

pip install supabase

Configuration

To connect to Supabase, you need to obtain the URL and API key from your
Supabase project.

from supabase import create_client, Client

url = "https://your-project.supabase.co"

key = "your-anon-key"

supabase: Client = create_client(url, key)

Inserting Data

To add data to a table, we use the insert method:

data = {"nome": "Mario", "cognome": "Rossi", "email": 

"mario.rossi@example.com"}



response = 

supabase.table("utenti").insert(data).execute()

print(response)

Reading Data

To read data from a table, we use the select method:

response = 

supabase.table("utenti").select("*").execute()

print(response.data)

Updating Data

To update a specific record, we can use the update method:

response = supabase.table("utenti").update({"email": 

"nuova.email@example.com"}).eq("nome", 

"Mario").execute()

print(response)

Deleting Data

To delete a record, we use the delete method:

response = 

supabase.table("utenti").delete().eq("nome", 

"Mario").execute()

print(response)



Authentication Management

Supabase provides an authentication system based on email and
password. To register a user:

response = supabase.auth.sign_up({"email": 

"utente@example.com", "password": "password123"})

print(response)

To log in:

response = 

supabase.auth.sign_in_with_password({"email": 

"utente@example.com", "password": "password123"})

print(response)

Conclusion

Supabase is a powerful platform that simplifies database and authentication
management in Python. With this guide, you have the basics to start using
Supabase in your project.


